Introducing StitchIt – The CommonJS Module packager for ASP.NET MVC


One of the biggest challenges writing large client-side JavaScript single page applications is how you actually manage a large amount of JavaScript. How do you structure the content of the files? Where do you include all the script tags? What order do the script tags have to appear in? It’s all a bit of a headache.

The CommonJS Modules specification proposes a method of structuring JavaScript into self contained modules which specify what they require to run and what they expose externally. At it’s most basic – a global require function loads a module by an identifier (which typically looks like a file path), and there’s a global exports object that the module can attach it’s API on which is returned by the require call. If you’ve ever tried out Node.js it’ll be familiar to you.

exports.add = function(n1, n2) {
	return n1 + n2;


var calculator = require('calc');

var result = calculator.add(2, 3); // 5


StitchIt is based on a great library for Node called Stitch which provides a CommonJS Module API in the browser and will automatically package your JavaScript into modules.

Disclaimer: StitchIt is not yet ready for use. It’s the result of only a few hours work on a Sunday afternoon to serve as a prototype for how CommonJS modules could really be the way to go for structuring large JavaScript applications. The code is probably awful, there’s absolutely no caching so it will rebuild everything on every request and there’s no minification. I hope to make it production ready in the coming weeks but for the time being it’s just something to look at.

That said, let’s dig into a demonstration of how it works. You start by placing all the JavaScript you want packaged into a directory – in this case I’ve used ~/Scripts/app. We initialize StitchIt in the application’s InitializeRoutes method and expose its packaged content on a path.

public static void RegisterRoutes(RouteCollection routes)

Inside the Scripts/app directory we’ll make a couple of our JavaScript files which will form a basic application. For this example I’m using the sample code provided in the CommonJS Module specification itself.


exports.add = function() {
    var sum = 0, i = 0, args = arguments, l = args.length;
    while (i < l) {
        sum += args[i++];
    return sum;


var add = require('math').add;

exports.increment = function(val) {
    return add(val, 1);


var inc = require('increment').increment;
var a = 1;
var b = inc(a);

console.log(b); // 2

With these in place we can pull down the file generated by StitchIt in a script tag and then use a require function attached to the global stitchIt object to execute our program.


<script src="/app.js"></script>

Wrapping third party JavaScript libraries into Modules

Very few client-side JavaScript libraries are built as CommonJS Modules, so how do we use them from our Modularized code? Let’s take jQuery as it’s probably the first JavaScript library people will want to use.

We’ll ensure that jQuery is loaded separately via a normal script tag before loading the StitchIt content. Then we’ll create a wrapper which instead of attaching an API to exports, will completely replace the module exports with the jQuery object itself grabbed from the window.


module.exports = window.jQuery;

Using this wrapper module we can just require it like a normal library.


var $ = require('jquery');

$(function () {
    $('body').text('Hi from jQuery');

Beyond JavaScript – Managing related client-side templates

If you’ve done much with KnockOut or jQuery templating you’ve probably found yourself dumping templates into script blocks in the main page body. Although this works for simple scenarios, I quickly found this practice horribly difficult to manage for large single page apps. Following RequireJS’s and Stitch’s example, I added support for adding *.html files to your JavaScript application directory. StitchIt will wrap these into a CommonJS JavaScript module so they can be required like any other JS dependency.


    <span>Hi, I'm ${name}</span>


var $ = require('jquery'),
    template = require('./personViewTmpl'); // Just another module

function PersonView(el, name) {
    $.tmpl(template, { name: name }).appendTo(el);

exports.PersonView = PersonView;


var $ = require('jquery'),
    PersonView = require('views/personView').PersonView;

$(function () {
    var davidView = new PersonView($('body'), 'David');

Also notice the use of global and relative identifiers for the require call – this allows us to nicely organize our JavaScript into sub-directories that can be as deep as we need. Relative module identifiers are evaluated relative to where that module resides.


I know what you’re thinking – JavaScript is so 2010. Well thanks to Jurassic, a wonderful JavaScript runtime for .NET, simply drop in .coffee files to your app directory and they’ll automatically get compiled to JavaScript when the StitchIt package is built.

class Person
	constructor: (@name) ->

	sayHi: () ->
		"Hi, I'm #{@name}"

exports.Person = Person


var Person = require('person').Person;

var david = new Person('David');

console.log( david.sayHi() ); // Hi, I'm David

What needs to be done before it’s ready?

So there’s enough here to show off what I believe are very important concepts, but it’s still a fair bit off being usable. Currently all of the modules get packaged into a single .js file. Although some may disagree, I prefer wrapping all the code up into a single file which can be downloaded once and then cached forever in the client. The biggest issue now is that this .js file is getting completely regenerated on every request – this may work okay for development but ideally I’ll probably want to compare time stamps or something to only regenerate the package when it’s source files have changed.

I’ll also want to integrate some form of js minification into StitchIt. I’d ideally find a way of using SquishIt (a great tool which inspired this name). If that’s not possible I’ll probably want to integrate Google’s Closure compiler directly into StitchIt.

There’s also currently only a fraction of the CommonJS Module specification implemented. The major requirement will be support for require.paths so we can control where modules are loaded from – although I’m not sure how much sense this makes in a browser at this point.

Grand Ideas

Looking further into the future I’ve got some fairly grand plans. If I support exposing modules from resources in .NET assemblies I can imagine providing very cool NuGet integration support.

Install-Package knockout
var knockout = require('knockout');

I also wonder how difficult it would be to evaluate these CommonJS modules in Visual Studio itself to go towards providing some kind of AutoComplete/Intellisense support.

Probably very difficult.

Show me the code

All the code is up at GitHub – StitchIt. Please go browse and fork. I’d love to hear your thoughts.